異なるフォーマットと構造間でのデータ変換
- id: fetch_data
name: fetch_data
tool: PYTHON_SANDBOX_RUN
input:
- name: code
value: |
# サンプルデータ処理
import json
# APIやデータベースからのデータ取得をシミュレート
raw_data = [
{"name": "田中太郎", "email": "tanaka@example.com", "age": 30, "city": "東京"},
{"name": "佐藤花子", "email": "sato@example.com", "age": 25, "city": "大阪"},
{"name": "鈴木一郎", "email": "suzuki@example.com", "age": 35, "city": "名古屋"}
]
# 2D配列形式に変換
headers = ["名前", "メール", "年齢", "都市"]
data_rows = []
data_rows.append(headers)
for item in raw_data:
row = [item["name"], item["email"], str(item["age"]), item["city"]]
data_rows.append(row)
print(json.dumps(data_rows, ensure_ascii=False))
- id: convert_to_csv
name: convert_to_csv
tool: CONVERTER_ARRAY_TO_CSV
input:
- name: array
value: "{{steps.fetch_data.result.stdout | fromJson}}"
- id: save_csv_file
name: save_csv_file
tool: OUTPUT_FILE
input:
- name: content
value: "{{steps.convert_to_csv.result.csv}}"
- name: filename
value: "user_data_export.csv"
- name: fileType
value: "csv"
- id: calculate_sales_metrics
name: calculate_sales_metrics
tool: PYTHON_SANDBOX_RUN
input:
- name: code
value: |
import json
from datetime import datetime, timedelta
# サンプル売上データ
sales_data = [
{"product": "商品A", "sales": 1500, "region": "北部", "month": "1月"},
{"product": "商品B", "sales": 2300, "region": "南部", "month": "1月"},
{"product": "商品A", "sales": 1800, "region": "北部", "month": "2月"},
{"product": "商品B", "sales": 2100, "region": "南部", "month": "2月"}
]
# サマリーテーブルを作成
summary = [["商品", "地域", "月", "売上", "成長率"]]
for i, item in enumerate(sales_data):
growth = "N/A"
if i >= 2: # 2月データの成長率を計算
prev_sales = sales_data[i-2]["sales"]
growth = f"{((item['sales'] - prev_sales) / prev_sales * 100):.1f}%"
summary.append([
item["product"],
item["region"],
item["month"],
f"¥{item['sales']:,}",
growth
])
print(json.dumps(summary, ensure_ascii=False))
- id: export_sales_csv
name: export_sales_csv
tool: ARRAY_TO_CSV
input:
- name: array
value: "{{steps.calculate_sales_metrics.result.stdout | fromJson}}"
- id: create_downloadable_report
name: create_downloadable_report
tool: OUTPUT_FILE
input:
- name: content
value: "{{steps.export_sales_csv.result.csv}}"
- name: filename
value: "sales_report_{{date | format('YYYY-MM-DD')}}.csv"
- name: fileType
value: "csv"
- id: input_images
name: input_images
tool: INPUT_IMAGE_FILE
input:
- name: file_url
value: "https://example.com/chart1.png"
- name: description
value: "売上チャート画像"
- id: convert_chart_to_pdf
name: convert_chart_to_pdf
tool: CONVERTER_IMAGE_TO_PDF
input:
- name: image_url
value: "{{steps.input_images.result.file_url}}"
- name: filename
value: "sales_chart.pdf"
- id: batch_image_conversion
name: batch_image_conversion
tool: PYTHON_SANDBOX_RUN
input:
- name: code
value: |
# PDF変換用の複数画像を処理
image_urls = [
"https://example.com/chart1.png",
"https://example.com/chart2.png",
"https://example.com/chart3.png"
]
conversion_tasks = []
for i, url in enumerate(image_urls):
task = {
"step_id": f"convert_image_{i+1}",
"tool": "CONVERTER_IMAGE_TO_PDF",
"image_url": url,
"filename": f"chart_{i+1}.pdf"
}
conversion_tasks.append(task)
print("画像がバッチ変換の準備完了")
print(f"画像総数: {len(image_urls)}")
- id: extract_complex_data
name: extract_complex_data
tool: EXCEL_GET_ROWS
input:
- name: file_url
value: "{{steps.input_excel.result.file_url}}"
- name: range
value: "A1:F1000"
- id: transform_and_clean_data
name: transform_and_clean_data
tool: PYTHON_SANDBOX_RUN
input:
- name: code
value: |
import json
import re
# Excelデータを解析
excel_data = {{steps.extract_complex_data.result.content}}
# データをクリーンアップし変換
cleaned_data = []
headers = ["ID", "名前", "メール", "電話", "ステータス", "備考"]
cleaned_data.append(headers)
for row in excel_data[1:]: # ヘッダー行をスキップ
if len(row) >= 6:
# メールをクリーンアップ
email = row[2].strip().lower() if row[2] else ""
# 電話番号をフォーマット
phone = re.sub(r'[^\d+]', '', row[3]) if row[3] else ""
# 備考をクリーンアップしエスケープ(カンマ、引用符を含む可能性)
notes = str(row[5]).replace('"', '""') if row[5] else ""
cleaned_row = [
str(row[0]) if row[0] else "",
str(row[1]).title() if row[1] else "",
email,
phone,
str(row[4]).upper() if row[4] else "保留中",
notes
]
cleaned_data.append(cleaned_row)
print(json.dumps(cleaned_data, ensure_ascii=False))
- id: convert_cleaned_data
name: convert_cleaned_data
tool: CONVERTER_ARRAY_TO_CSV
input:
- name: array
value: "{{steps.transform_and_clean_data.result.stdout | fromJson}}"
- id: save_cleaned_export
name: save_cleaned_export
tool: OUTPUT_FILE
input:
- name: content
value: "{{steps.convert_cleaned_data.result.csv}}"
- name: filename
value: "cleaned_data_export.csv"
- name: fileType
value: "csv"